Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Cancer Lett ; 588: 216760, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38428724

RESUMEN

Oncolytic viruses have emerged as a promising modality for cancer treatment due to their unique abilities to directly destroy tumor cells and modulate the tumor microenvironment. Bispecific T-cell engagers (BsAbs) have been developed to activate and redirect cytotoxic T lymphocytes, enhancing the antitumor response. To take advantage of the specific infection capacity and carrying ability of exogenous genes, we generated a recombinant herpes simplex virus type 1 (HSV-1), HSV-1dko-B7H3nb/CD3 or HSV-1dko-B7H3nb/mCD3, carrying a B7H3nb/CD3 or B7H3nb/mCD3 BsAb that replicates and expresses BsAb in tumor cells in vitro and in vivo. The new generation of oncolytic viruses has been genetically modified using CRISPR/Cas9 technology and the cre-loxp system to increase the efficiency of HSV genome editing. Additionally, we used two fully immunocompetent models (GL261 and MC38) to assess the antitumor effect of HSV-1dko-B7H3nb/mCD3. Compared with the HSV-1dko control virus, HSV-1dko-B7H3nb/mCD3 induced enhanced anti-tumor immune responses and T-cell infiltration in both GL261 and MC38 models, resulting in improved treatment efficacy in the latter. Furthermore, flow cytometry analysis of the tumor microenvironment confirmed an increase in NK cells and effector CD8+ T cells, and a decrease in immunosuppressive cells, including FOXP3+ regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and CD206+ macrophages (M2). Overall, our study identified a novel camel B7H3 nanobody and described the genetic modification of the HSV-1 genome using CRISPR/Cas9 technology and the cre-loxp system. Our findings indicate that expressing B7H3nb/CD3 BsAb could improve the antitumor effects of HSV-1 based oncolytic virus.


Asunto(s)
Herpesvirus Humano 1 , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Herpesvirus Humano 1/genética , Linfocitos T CD8-positivos , Virus Oncolíticos/genética , Neoplasias/genética , Viroterapia Oncolítica/métodos , Microambiente Tumoral
3.
Elife ; 122023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37728612

RESUMEN

Billions of apoptotic cells are removed daily in a human adult by professional phagocytes (e.g. macrophages) and neighboring nonprofessional phagocytes (e.g. stromal cells). Despite being a type of professional phagocyte, neutrophils are thought to be excluded from apoptotic sites to avoid tissue inflammation. Here, we report a fundamental and unexpected role of neutrophils as the predominant phagocyte responsible for the clearance of apoptotic hepatic cells in the steady state. In contrast to the engulfment of dead cells by macrophages, neutrophils burrowed directly into apoptotic hepatocytes, a process we term perforocytosis, and ingested the effete cells from the inside. The depletion of neutrophils caused defective removal of apoptotic bodies, induced tissue injury in the mouse liver, and led to the generation of autoantibodies. Human autoimmune liver disease showed similar defects in the neutrophil-mediated clearance of apoptotic hepatic cells. Hence, neutrophils possess a specialized immunologically silent mechanism for the clearance of apoptotic hepatocytes through perforocytosis, and defects in this key housekeeping function of neutrophils contribute to the genesis of autoimmune liver disease.


Every day, the immune cells clears the remains of billions of old and damaged cells that have undergone a controlled form of death. Removing them quickly helps to prevent inflammation or the development of autoimmune diseases. While immune cells called neutrophils are generally tasked with removing invading bacteria, macrophages are thought to be responsible for clearing dead cells. However, in healthy tissue, the process occurs so efficiently that it can be difficult to confirm which cells are responsible. To take a closer look, Cao et al. focused on the liver by staining human samples to identify both immune and dead cells. Unexpectedly, there were large numbers of neutrophils visible inside dead liver cells. Further experiments in mice revealed that after entering the dead cells, neutrophils engulfed the contents and digested the dead cell from the inside out. This was a surprising finding because not only are neutrophils not usually associated with dead cells, but immune cells usually engulf cells and bacteria from the outside rather than burrowing inside them. The importance of this neutrophil behaviour was shown when Cao et al. studied samples from patients with an autoimmune disease where immune cells attack the liver. In this case, very few dead liver cells contained neutrophils, and the neutrophils themselves did not seem capable of removing the dead cells, leading to inflammation. This suggests that defective neutrophil function could be a key contributor to this autoimmune disease. The findings identify a new role for neutrophils in maintaining healthy functioning of the liver and reveal a new target in the treatment of autoimmune diseases. In the future, Cao et al. plan to explore whether compounds that enhance clearance of dead cells by neutrophils can be used to treat autoimmune liver disease in mouse models of the disease.


Asunto(s)
Enfermedades Autoinmunes , Neutrófilos , Adulto , Humanos , Animales , Ratones , Hepatocitos , Fagocitos , Macrófagos , Autoanticuerpos
4.
World Neurosurg ; 180: e117-e126, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37683921

RESUMEN

BACKGROUND: Although a benign intracranial tumor, craniopharyngioma treatment has always been considered a challenging clinical problem. Recently, BRAF V600E mutation in the pathogenesis of papillary craniopharyngioma (PCP) has been further revealed. Thus, BRAF inhibitors (BRAFi) serve as an applicable treatment for patients with PCP. METHODS: Two patients with recurrent PCP were treated with combined BRAFi dabrafenib (150 mg, orally twice daily) and MEK inhibitors (MEKi) trametinib (2 mg, orally twice daily). A follow-up exceeding 2 years was conducted. We meticulously scrutinized the treatment's safety and efficacy profiles by delving into existing literature. RESULTS: One patient harboring a solid tumor achieved a complete tumor response devoid of any adverse events and encountered no recurrence over 2 years subsequent to discontinuation. Moreover, within a mere month of commencing targeted therapy, the tumor demonstrated observable shrinkage. This finding substantiates the considerable potential inherent in targeted therapy for PCP cases marked by the somatic BRAF V600E mutation. CONCLUSIONS: Under specific conditions, individuals diagnosed with PCP can attain a complete tumor response following combined treatment with BRAFi/MEKi.


Asunto(s)
Craneofaringioma , Neoplasias Hipofisarias , Humanos , Craneofaringioma/tratamiento farmacológico , Craneofaringioma/genética , Proteínas Proto-Oncogénicas B-raf/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Mutación/genética , Inhibidores de Proteínas Quinasas , Neoplasias Hipofisarias/diagnóstico por imagen , Neoplasias Hipofisarias/tratamiento farmacológico , Neoplasias Hipofisarias/genética
5.
Front Neurol ; 14: 1220473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638192

RESUMEN

Objective: Idiopathic normal-pressure hydrocephalus (iNPH) is a treatable cause of dementia; however, its etiology and pathogenesis remain poorly understood. The objective of this study was to investigate the prevalence and impact of vascular risk factors in patients with iNPH compared to a control cohort to better understand the potential mechanisms and preventive measures. Methods: We systematically searched PubMed, Web of Science, Embase, and the Cochrane Library (from inception to December 20, 2022) for studies reporting vascular risk factors for the development of iNPH. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using random-effects models. Results: After screening 1,462 articles, 11 case-control studies comprising 1,048 patients with iNPH and 79,668 cognitively unimpaired controls were included in the meta-analysis. Our data showed that hypertension (N = 991, OR = 2.30, 95% CI 1.64 to 3.23, I2= 64.0%), diabetes mellitus (DM) (N = 985, OR = 3.12, 95% CI 2.29 to 4.27, I2= 44.0%), coronary heart disease (CHD; N = 880, OR = 2.34, 95% CI 1.33 to 4.12, I2= 83.1%), and peripheral vascular disease (N = 172, OR = 2.77, 95% CI 1.50 to 5.13, I2= 0.0%) increased the risk for iNPH, while overweight was a possible factor (N = 225, OR = 2.01, 95% CI 1.34 to 3.04, I2= 0.0%) based on the sensitivity analysis. Smoking and alcohol consumption were not associated with iNPH. Conclusions: Our study suggested that hypertension, DM, CHD, peripheral vascular disease, and overweight were associated with iNPH. These factors might be involved in the pathophysiological mechanisms promoting iNPH. These findings require further investigation in future studies. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, CRD42022383004.

6.
Stem Cell Res Ther ; 14(1): 198, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553595

RESUMEN

Regenerative repair of the brain after traumatic brain injury (TBI) remains an extensive clinical challenge, inspiring intensified interest in therapeutic approaches to explore superior repair strategies. Exosome therapy is another research hotspot following stem cell alternative therapy. Prior research verified that exosomes produced by neural stem cells can participate in the physiological and pathological changes associated with TBI and have potential neuroregulatory and repair functions. In comparison with their parental stem cells, exosomes have superior stability and immune tolerance and lower tumorigenic risk. In addition, they can readily penetrate the blood‒brain barrier, which makes their treatment efficiency superior to that of transplanted stem cells. Exosomes secreted by neural stem cells present a promising strategy for the development of novel regenerative therapies. Their tissue regeneration and immunomodulatory potential have made them encouraging candidates for TBI repair. The present review addresses the challenges, applications and potential mechanisms of neural stem cell exosomes in regenerating damaged brains.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Exosomas , Células-Madre Neurales , Humanos , Exosomas/patología , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/patología , Células-Madre Neurales/patología , Encéfalo/patología
7.
Neuropharmacology ; 237: 109633, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37327970

RESUMEN

Neuroinflammation plays a vital role in intraventricular hemorrhage (IVH). Excessive neuroinflammation after IVH can activate the inflammasome in the cell and accelerate the occurrence of pyroptosis in cells, produce more inflammatory mediators, increase cell death, and lead to neurological deficits. Previous studies have reported that BRD3308 (BRD), an inhibitor of histone deacetylation by histone deacetylase 3 (HDAC3), suppresses inflammation-induced apoptosis and exhibits anti-inflammatory properties. However, it is unclear how BRD reduces the occurrence of the inflammatory cascade. In this study, we stereotactically punctured the ventricles of male C57BL/6J mice and injected autologous blood via the tail vein to simulate ventricular hemorrhage. Magnetic resonance imaging was used to detect ventricular hemorrhage and enlargement. Our findings demonstrated that BRD treatment significantly improved neurobehavioral performance and decreased neuronal loss, microglial activation, and pyroptosis in the hippocampus after IVH. At the molecular level, this treatment upregulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) and inhibited NLRP3-mediated pyroptosis and inflammatory cytokines. Therefore, we concluded that BRD reduced pyroptosis and neuroinflammation and improve nerve function in part by activating the PPARγ/NLRP3/GSDMD signaling pathway. Our findings suggest a potential preventive role for BRD in IVH.


Asunto(s)
PPAR gamma , Piroptosis , Animales , Masculino , Ratones , Hemorragia Cerebral/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Inflamasomas , Ratones Endogámicos C57BL , Microglía , Enfermedades Neuroinflamatorias , Proteína con Dominio Pirina 3 de la Familia NLR
8.
Neural Regen Res ; 18(10): 2278-2284, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37056148

RESUMEN

Pyroptosis plays an important role in hemorrhagic stroke. Excessive endoplasmic reticulum stress can cause endoplasmic reticulum dysfunction and cellular pyroptosis by regulating the nucleotide-binding oligomerization domain and leucine-rich repeat pyrin domain-containing protein 3 (NLRP3) pathway. However, the relationship between pyroptosis and endoplasmic reticulum stress after intraventricular hemorrhage is unclear. In this study, we established a mouse model of intraventricular hemorrhage and found pyroptosis and endoplasmic reticulum stress in brain tissue. Intraperitoneal injection of the selective GPR120 agonist TUG-891 inhibited endoplasmic reticulum stress, pyroptosis, and inflammation and protected neurons. The neuroprotective effect of TUG-891 appears related to inhibition of endoplasmic reticulum stress and pyroptosis activation.

9.
Sci Adv ; 9(15): eadc8933, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37043580

RESUMEN

Despite improvements in microscopically neurosurgical techniques made in recent years, the prognosis of adamantinomatous craniopharyngioma (ACP) is still unsatisfactory. Little is known about cellular atlas and biological features of ACP. Here, we carried out integrative analysis of 44,038 single-cell transcriptome profiles to characterize the landscape of intratumoral heterogeneity and tumor microenvironment (TME) in ACP. Four major neoplastic cell states with distinctive expression signatures were defined, which further revealed the histopathological features and elucidated unknown cellular atlas of ACP. Pseudotime analyses suggested potential evolutionary trajectories between specific neoplastic cell states. Notably, a distinct oligodendrocyte lineage was identified in ACP, which was associated with immunological infiltration and neural damage. In addition, we described a tumor-centric regulatory network based on intercellular communication in TME. Together, our findings represent a unique resource for deciphering tumor heterogeneity of ACP, which will improve clinical diagnosis and treatment strategies.


Asunto(s)
Craneofaringioma , Neoplasias Hipofisarias , Humanos , Craneofaringioma/genética , Craneofaringioma/diagnóstico , Craneofaringioma/patología , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/diagnóstico , Neoplasias Hipofisarias/metabolismo , Transcriptoma , Comunicación Celular , Análisis de Secuencia de ARN , Microambiente Tumoral/genética
10.
Neural Regen Res ; 18(9): 1990-1998, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36926724

RESUMEN

There are various clinical treatments for traumatic brain injury, including surgery, drug therapy, and rehabilitation therapy; however, the therapeutic effects are limited. Scaffolds combined with exosomes represent a promising but challenging method for improving the repair of traumatic brain injury. In this study, we determined the ability of a novel 3D-printed collagen/chitosan scaffold loaded with exosomes derived from neural stem cells pretreated with insulin-like growth factor-1 (3D-CC-INExos) to improve traumatic brain injury repair and functional recovery after traumatic brain injury in rats. Composite scaffolds comprising collagen, chitosan, and exosomes derived from neural stem cells pretreated with insulin-like growth factor-1 (INExos) continuously released exosomes for 2 weeks. Transplantation of 3D-CC-INExos scaffolds significantly improved motor and cognitive functions in a rat traumatic brain injury model, as assessed by the Morris water maze test and modified neurological severity scores. In addition, immunofluorescence staining and transmission electron microscopy showed that 3D-CC-INExos implantation significantly improved the recovery of damaged nerve tissue in the injured area. In conclusion, this study suggests that transplanted 3D-CC-INExos scaffolds might provide a potential strategy for the treatment of traumatic brain injury and lay a solid foundation for clinical translation.

11.
J Neurol ; 270(5): 2724-2733, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36773060

RESUMEN

BACKGROUND AND OBJECTIVE: Patients with idiopathic normal pressure hydrocephalus (iNPH) have a higher prevalence of hypertension and diabetes. However, the causal effects of these vascular risk factors on iNPH remain unclear. This study aimed to explore the causal relationship between vascular risk factors (VRFs) and iNPH. METHODS: We conducted the Mendelian randomization (MR) analysis of iNPH. We included nineteen vascular risk factors related to hypertension, diabetes, lipids, obesity, smoking, alcohol consumption, exercise, sleep, and cardiovascular events as exposure factors. We used the inverse-variance weighted method for causal effect estimation and weighted median, maximum likelihood, and MR Egger regression methods for sensitivity analyses. RESULTS: We found that genetically predicting essential hypertension (OR = 1.608 (1.330-1.944), p = 0.013) and increased sleep duration (OR = 16.395 (5.624-47.799), p = 0.009) were associated with higher odds of iNPH. Type 1 diabetes (OR = 0.869 (0.828-0.913), p = 0.004) was associated with lower odds of iNPH. For the other 16 VRFs, there was no evidence that they were significantly associated with iNPH. Sensitivity analyses showed that essential hypertension and type 1 diabetes were significantly associated with iNPH. CONCLUSION: In our MR study on VRFs and iNPH, we found essential hypertension to be a causal risk factor for iNPH. This suggests that hypertension may be involved in the pathophysiological mechanism of iNPH.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hidrocéfalo Normotenso , Hipertensión , Humanos , Hidrocéfalo Normotenso/epidemiología , Hidrocéfalo Normotenso/genética , Análisis de la Aleatorización Mendeliana , Factores de Riesgo , Hipertensión/epidemiología , Hipertensión/genética , Hipertensión Esencial , Estudio de Asociación del Genoma Completo
13.
Carbohydr Polym ; 306: 120578, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36746568

RESUMEN

With wide clinical demands, therapies for traumatic brain injury (TBI) are far from satisfactory. Combining the merits of stem cells but avoiding the risk of immunologic rejection, bone marrow mesenchymal stem cell-derived exosomes (BME) attract increasing interests and have been proved effective for TBI repair by intravenous or in situ injection. However, difficulties in sustained delivery or aggregation in lesion sites remain obstacle to using BME for TBI. Inspired by that hydrogels are promising to bridge the destroyed neural gap and provide neural niches, we raised a novel strategy of incorporating BME into hyaluronan-collagen hydrogel (DHC-BME) to achieve both mimicking of brain matrix and steady release of exosomes, and thus realizing TBI repair. External characterizations proved that the BME and DHC synergistically promoted neural stem cells (NSCs) differentiation into neurons and oligodendrocytes while inhibited astrocytes differentiation. DHC-BME induced angiogenesis and neurogenesis, from endogenous NSC recruitment to neuronal differentiation and vascularization to synergistically promote axonal regeneration, remyelination, synapse formation and even brain structural remodeling, and lastly, neurological functional recovery of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Exosomas , Humanos , Ácido Hialurónico/farmacología , Hidrogeles/farmacología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Neurogénesis
14.
ACS Appl Mater Interfaces ; 15(4): 5897-5909, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656061

RESUMEN

A hydrogel that fuses long-term biologic integration, multimodal responsiveness, and therapeutic functions has received increasing interest as a wearable and implantable sensor but still faces great challenges as an all-in-one sensor by itself. Multiple bonding with stimuli response in a biocompatible hydrogel lights up the field of soft hydrogel interfaces suitable for both wearable and implantable applications. Given that, we proposed a strategy of combining chemical cross-linking and stimuli-responsive physical interactions to construct a biocompatible multifunctional hydrogel. In this hydrogel system, ureidopyrimidinone/tyramine (Upy/Tyr) difunctionalization of gelatin provides abundant dynamic physical interactions and stable covalent cross-linking; meanwhile, Tyr-doped poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) acts as a conductive filler to establish electrical percolation networks through enzymatic chemical cross-linking. Thus, the hydrogel is characterized with improved conductivity, conformal biointegration features (i.e., high stretchability, rapid self-healing, and excellent tissue adhesion), and multistimuli-responsive conductivity (i.e., temperature and urea). On the basis of these excellent performances, the prepared multifunctional hydrogel enables multimodal wearable sensing integration that can simultaneously track both physicochemical and electrophysiological attributes (i.e., motion, temperature, and urea), providing a more comprehensive monitoring of human health than current wearable monitors. In addition, the electroactive hydrogel here can serve as a bidirectional neural interface for both neural recording and therapeutic electrostimulation, bringing more opportunities for nonsurgical diagnosis and treatment of diseases.


Asunto(s)
Técnicas Biosensibles , Terapia por Estimulación Eléctrica , Dispositivos Electrónicos Vestibles , Humanos , Hidrogeles/química , Movimiento (Física) , Conductividad Eléctrica
15.
Regen Biomater ; 10: rbac085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36683754

RESUMEN

The restoration of nerve dysfunction after traumatic brain injury (TBI) faces huge challenges due to the limited self-regenerative abilities of nerve tissues. In situ inductive recovery can be achieved utilizing biological scaffolds combined with endogenous human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomes (MExos). In this study, brain-derived neurotrophic factor-stimulated HUCMSCs-derived exosomes (BMExos) were composited with collagen/chitosan by 3D printing technology. 3D-printed collagen/chitosan/BMExos (3D-CC-BMExos) scaffolds have excellent mechanical properties and biocompatibility. Subsequently, in vivo experiments showed that 3D-CC-BMExos therapy could improve the recovery of neuromotor function and cognitive function in a TBI model in rats. Consistent with the behavioural recovery, the results of histomorphological tests showed that 3D-CC-BMExos therapy could facilitate the remodelling of neural networks, such as improving the regeneration of nerve fibres, synaptic connections and myelin sheaths, in lesions after TBI.

16.
Adv Sci (Weinh) ; 10(3): e2205532, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403209

RESUMEN

The therapeutic use of bispecific T-cell engaging (BiTE) antibodies has shown great potential for treating malignancies. BiTE can simultaneously engage CD3ε on T cells and tumor antigen on cancer cells, thus exerting an effective antitumor effect. Nevertheless, challenges in production, manufacturing, and short serum half-life of BiTE have dampened some of the promise and impeded the pace of BiTE-based therapeutics to combat diseases. Nowadays, in vitro-transcribed mRNA has achieved programmed production, which is more flexible and cost-effective than the traditional method of producing recombinant antibody. Here, the authors have developed a BiTE-based mRNA treatment by encapsulating mRNA encoding B7H3×CD3 BiTE into a novel ionizable lipid nanoparticles (LNPs). The authors have found that LNPs have high transfection efficiency, and the hepatosplenic targeting capability of produce high concentrations of BiTE. Above all, a single intravenous injection of BiTE mRNA-LNPs could achieve high levels of protein expression in vivo and significantly prolonged the half-life of the BiTE, which can elicit robust and durable antitumor efficacy against hematologic malignancies and melanoma. Therefore, their results suggested that the therapeutic strategy based on mRNA expression of B7H3×CD3 BiTE is of potential research value and has promising clinical application prospects.


Asunto(s)
Anticuerpos Biespecíficos , Melanoma , Humanos , ARN Mensajero/metabolismo , Linfocitos T , Melanoma/metabolismo
17.
Neurol Res ; 45(3): 260-267, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36215435

RESUMEN

OBJECTIVES: Medulloblastoma is the most common malignant brain tumor in childhood. Although metastasis constitutes one of the poorest prognostic indicators in this disease, the mechanisms that drive metastasis have received less attention. The aim of our study is to provide valid biological information for the metastasis mechanism of medulloblastoma. METHODS: Gene expression profile of GSE468 was downloaded from GEO database and was analyzed using limma R package. Function and enrichment analyses of DEGs were performed based on PANTHER database. PPI network construction, hub gene selection and module analysis were conducted in Cytoscape software. RESULTS: Nine upregulated genes and 34 downregulated genes were selected as DEGs. The upregulated genes were mainly enriched in molecular function and cell component, which mainly included protein binding and nucleus respectively. A total of 120 enriched GO terms and 40 KEGG pathways were identified. The main enriched GO terms were the biological process such as apoptosis and MAPK activity. Besides, the enriched KEGG pathways also included MAPK signaling pathway. A PPI network was obtained, and JUN was identified as a hub gene. Also, we firstly investigated the role and regulatory mechanism of JUN in the metastasis of medulloblastoma. CONCLUSIONS: Through the bioinformatics analysis of the gene microarray in GEO, we found some crucial genes and pathways associated with the metastasis of medulloblastoma.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Transcriptoma , Perfilación de la Expresión Génica , Mapas de Interacción de Proteínas/genética , Redes Reguladoras de Genes/genética , Meduloblastoma/genética , Neoplasias Cerebelosas/genética , Biología Computacional , Regulación Neoplásica de la Expresión Génica/genética
18.
Gene ; 856: 147144, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36577450

RESUMEN

BACKGROUND: SARS-CoV-2 has a significant impact on healthcare systems all around the world. Due to its high pathogenicity, live SARS-CoV-2 must be handled under biosafety level 3 conditions. Pseudoviruses are useful virological tools because of their safety and versatility, but the low titer of these viruses remains a limitation for their more comprehensive applications. METHOD: Here, we constructed a Luc/eGFP based on a pseudotyped lentiviral HIV-1 system to transduce SARS-CoV-2 S glycoprotein to detect cell entry properties and cellular tropism. RESULTS: The furin cleavage site deletion of the S protein removed (SFko) can help SARS-CoV-2 S to be cleaved during viral packaging to improve infection efficiency. The furin cleavage site in SARS-CoV-2-S mediates membrane fusion and SFko leads to an increased level of S protein and limits S1/S2 cleavage to enhance pseudovirus infection in cells. Full-length S (SFL) pseudotyped with N, M, and E helper packaging can effectively help SFL infect cells. Finally, pseudotyped SFko particles were successfully used to detect neutralizing antibodies in RBD protein-immunized mouse serum. CONCLUSION: Overall, our study indicates a series of modifications that result in the production of relatively high-titer SARS-COV-2 pseudo-particles that may be suitable for the detection of neutralizing antibodies from COVID-19 patients.


Asunto(s)
COVID-19 , Animales , Humanos , Ratones , SARS-CoV-2/metabolismo , Furina/genética , Furina/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Anticuerpos Neutralizantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...